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Abstract

A simple analytic  model allows prediction of rate constants and size effect behavior before a hydrocode
run if size effect data exists. At infinite radius, it defines not only detonation velocity but also average
detonation rate, pressure and energy. This allows the derivation of a generalized radius, which becomes
larger as the explosive becomes more non-ideal. The model is applied to near-ideal PBX 9404, in-between
ANFO and most non-ideal AN. The power of the pressure declines from 2.3, 1.5 to 0.8 across this set. The
power of the burn fraction, F, is 0.8, 0 and 0, so that an F-term is important only for the ideal explosives.
The size effect shapes change from concave-down to nearly straight to concave-up. Failure is associated
with ideal explosives when the calculated detonation velocity turns in a  double-valued way. The effect of
the power of the pressure may be simulated by including a pressure cutoff in the detonation rate. The
models allows comparison of a wide spectrum of explosives providing that a single detonation rate is
feasible.
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1 Introduction

Reactive Flow is the class of explosive models where the chemistry of detonation is simulated by an

overall reaction rate and where the rate constant is assumed to be truly constant.  Although these models

have been in use for thirty years, their workings often seem mysterious.  Moreover, once calibrated for one

explosive, it is not obvious how to change the parameters for another. The simple analytic model given here

works for many explosives providing that a single detonation rate can be used.

The test of this model is to calculate the size (diameter) effect, which is a plot of detonation velocity

versus inverse radius of a cylindrical explosive part. The spectrum of explosives may be indicated by

considering three general classes, all very different.   1)  Ideal PBX 9404 and Comp B  have a shape that is

strongly concave-down in inverse radius space. The explosives fail at 0.6–2 mm with a dimensionless

detonation velocity Us/D ratio of 0.83-0.85.[1,2]   2) Non-ideal ammonium nitrate emulsion k1a and ANFO

prill have an almost straight size effect line, and they fail at a radius of 6-10 mm with Us/D of about 0.6.[3-

5]    3) Extremely non-ideal ammonium nitrate at 1.0 g/cm3 and Australian heavy ammonium nitrate

emulsion, HANFO, are concave-up in shape, fail at 25-70 mm with  Us/D of 0.25-0.31.[6,7]  Thus, the radii

get larger and failure occurs at lower fractional detonation velocities. In the simple reactive flow code

JWL++, these three, calculated separately,  have usually had detonation rates with powers of the pressure,

b,  of  2-3, 1 and 1, respectively.[8]



To model size effect behavior, Leiper, Kirby and Cooper suggested a Gaussian function that modulates

the energy delivery over the range of the burn fraction, F. [9-11]  In their one-dimensional, three-rate

model, they reproduced the concave-up size effect shape of AN slurry and nitrogylcerine powder using a

Gaussian function peaked at the early burn fraction of 0.15.  They also reproduced the concave-down shape

of Comp B with a late energy delivery peak at a burn fraction of  0.7. Their Gaussian functions did not run

continuously from 0 < F < 1 but turned on at some initial value of F. The rate was proportional to pressure

to the first power. This approach showed that  energy delivery early or late in the reaction zone can set the

shape of the size effect curve.

2  Necessary Input Relations

The model assumes that a burn fraction, F, of 1 occurs only for detonation of a ratesticks of infinite

radius, where the detonation velocity is D. All real ratesticks of radius Ro have a smaller detonation

velocity Us.  The sonic surface at the back of the reaction zone, then, is never at F = 1, although the

explosive may burn the rest of the way behind the reaction zone, where it goes not affect the detonation

front.  The burn fraction at the back of the reaction zone, Fe, is related to the other variables by this useful

equation, which is more fully discussed in the Appendix:
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where the numerators are all at the radius Ro and the denominators are all at infinite radius. In a reactive

flow code, F is defined in terms of the fraction of the detonation energy, Eo.  Pm is a mean pressure

somewhere between the spike and the C-J point.

Ratestick detonation velocities are described by this equation from Eyring, et. al.[12]
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where <xe> is the average reaction zone length.  The extrapolation of this inverse radius plot back to zero is

what defines D.   The reaction zone length is equated with measured edge lags of the detonation front, and

the parameter σ is empirically described  by[13]
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Also, the time to cross the reaction zone, te, is given by

            
  

€ 

te =
< xe >

U s
. (4)

3 The Simple Model

The rate equation for a one-rate model is

  

€ 

dF
dt

= GPbF a(1−F )c (5)

where G is the rate constant, which can be a function of the radius and, therefore, not really a constant. We

collect F on the left and integrate numerically to Fe to get the result
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In the reaction zone, the pressure declines from the spike to the C-J point, but we shall use a mean pressure

for simplicity. We substitute Eqs. (1), (2) and (4) to get
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We define a dimensionless radius
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RD =
D

GD(PD )b
. (8)



We now replace G with GD, which will be held constant for all radii.   GD is obtained by extrapolating G

back to zero inverse radius.  We rearrange Eq. (7) to get
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Eq. (9) now becomes a generalized version of the Eyring equation. We will solve it for RD/Ro against

which we will plot versus the dimensionless detonation velocity Us/D.

4  Estimating  GD

How do we estimate the constant GD
 from real data?  The average detonation rate is inversely

proportional to the slope of the size effect curve.[8]  This effect is easily seen in the codes by changing

rates and watching the curves rotate about the infinite-radius detonation velocity, D. We take Eq. (5) and

convert it to the average detonation rate for a radius Ro
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where <dF/dt> in µs-1 is independent  of models. The average value <F> is set to be 1/2.  We next move to

infinite radius, where Fe = 1, so that term disappears.  The middle term takes size effect data and converts it

into an average rate, which we then extrapolate back to zero inverse radius to get the average rate at infinite

radius  <dF/dt>D..  Also, G turns into GD, now a true constant.  We have a problem with the averages of the

terms containing F.   First, we are not sure what value to use if evaluated at infinite radius. Second, the

terms are function of a and c, which is  extremely inconvenient in repetitive calculating and plotting. We

shall try an intermediate position, where we use the a = 0, c = 1 value of 1/2 everywhere.    We then get at

infinite radius
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= cons tan t .  (11)



We see that 
  

€ 

GD(PD )b  and RD are indeed constant with respect to b, which is an important relation. This

produces the effect where if b increases, so does GD.  It is well-known in a reactive flow code that

increasing the power of the pressure causes the rate constant to also increase exponentially. We get the

generalized radius

                         
  

€ 

RD ≈
D

2 < dF / dt >D
(12)

in terms of the size effect data as discussed after Eq. 10.

5  Results

The near-ideal, concave-down explosive PBX 9404 is shown in Figure 1. The bend is so great that the

entire curve lies in a small RD/Ro range. To get this effect, we need a large value of  a = 0.67 and of b = 2.3,

and this is shown by the heavy line.

The less ideal explosives have a nearly straight line as shown in Figure 2:  AN emulsion k1a and

ANFO prill. These are easily fit with a = 0, c = 1 and b = 1.5.

Figure 3 goes to other extreme at large RD/Ro values with the ultra-slow, super non-ideal explosives

1.0 g/cc AN, potassium chlorate 80/sugar [14] and HANFO (Australian heavy AN emulsion).  We use a =

0, c = 1, b = 0.8 to get a concave-up shape.

We have fit all three kinds of explosives by increasing b going from non-ideal to ideal explosives. It is

interesting to note that F0.67 was derived as a description of energy spherically moving outward from hot

spots,[12]  yet it appears here only for the most ideal case.  Increasing a or b causes the curve to become

more concave-down in slightly different ways. PBX 9404 is so concave-down that both terms have been

made large.

6. Pressure Cutoff

Leiper, et. al. made an analytical model that used b = 1 with a pressure cutoff Po to create the concave-

down shape as well as failure. [9-11]   For P < Po, GD = 0. This can be added to give
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RD =
D

GD(PD −Po )b
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The result is shown by the fine line in Figure 1, where the concave-down shape is given with b = 1 with

  

€ 

Po = 0.3PD .  A large value of a is still needed.  The pressure cutoff is yet another way to create concave-

down behavior. This applies only in the region of small RD/Ro, a double-valued curve appears, of which the

cusp is often taken as indicating failure.

7. Summary

We have constructed a simple model for detonation in the Reactive Flow manner, and we have used

this model to calculate size effect curves.  The model assumes that energy is proportional to pressure which

is proportional to detonation velocity-squared. It also assumes total reaction only at infinite radius and

expects ever smaller burn fractions as the radius decreases.  The shape of the size effect curve is set by the

powers of the pressure, the burn fraction and one minus the burn fraction- all of which describe the energy

delivery inside the reaction zone.  Ideal explosives show concave-down size effect curves and extremely

non-ideal explosives show concave-up curves. In going from ideal to non-ideal, the power of the pressure

(b) continually declines. The power of the burn fraction (a) can be large only for ideal explosives. In

summary, the model shows that this simple method can be used across the spectrum of explosives.

Appendix

A1  Deriving the Energy-Pressure-Detonation  Velocity Relation

Eq. (1), which is essential for this model,  is an approximate  but useful equation for scaling of

equations-of-state. The relation
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F ≈
Eo
ED

(A-1)

is true by definition. If we consider with the mass-momentum conservation equation
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(1− vcj ) =
u p
U s

, (A-2)

we find from the thermochemical code CHEETAH that the C-J relative volume for most dense explosives

is 0.76-0.78 and for half-dense 0.72-0.73.  If we take a _ compression as the average, we have
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We next use the density-momentum conservation  equation
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2(1− v ) (A-4)

and compare results at radius Ro with infinite radius to get
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Next, we consider that Eo, before it comes out of the explosive to do work, must be used to compress

and accelerate the mass of the unreacted explosive next to it.  We set

                               

€ 

Eo ≈ P(1− v ). (A-6)

We next substitute Eqs. (A-3) and (A-4) and add infinite radius to get
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A2   Relations in the Model

Because we have no real data to test the above relations, we turn to the reactive flow model JWL++

running in a two-dimensional arbitrary Lagrangian-Eulerian (ALE) hydrocode with CALE-like properties.

We shall run different radii of the same material. The sonic plane is found using the function

                      

€ 

( upx
2 + upy

2 )i
1 / 2 + Ci −U s = 0 . (A-8)

where Us is the detonation velocity in the ratestick found in the first code run and Ci is the speed of sound

as determined by the equation-of-state.  The particle velocities and sound speeds are in the ith zone on

every cycle, so that their sum forms an instantaneous detonation velocity. When Eq. (A-9) equals zero, we

are on the sonic plane, where no energy can move forward to the front.  In a given zone, we plot the burn



fraction versus the sonic function to get the burn fraction on the sonic plane.  The maximum pressures are

also obtained wherever they appear inside the reaction zone. The averages for the overall burn fraction and

maximum pressure are given by
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Fe = λ iFei
i
∑

Pm = λ iPmi
i
∑

                          (A-9)

. 

where λi is the fraction of radial area. We need to use explosives that have large reaction zones and react at

small burn fractions in order to get the resolution possible in mapping code output. The zoning is set so that

we have a 35-50 zones radially and that the reaction zone contains 8 –12 zones.  At least 12 slices and

sometimes over 20 slices radially are taken in the analysis. For ratesticks 10 times longer than the radius,

the results are constant at each radius and represent steady state conditions.  The values of D and PD come

from extrapolation of the code results with the running of a large radius sample being essential to obtaining

a good value.

The results are plotted in Figure 4. The linear relations agree with the derivations we carried out.
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Symbols and Abbreviations

a Pressure exponent for F (dimensionless)
b Pressure exponent for pressure (dimensionless)
C Speed of sound (mm/µs)
c Pressure exponent for (1- F) (dimensionless)
D Detonation velocity at infinite radius (mm/µs)
Eo Detonation energy at radius Ro (kJ/cm3)
ED Detonation energy at infinite radius (kJ/cm3)
F Burn fraction (dimensionless)
<F> Average burn fraction (dimensionless)
<dF/dt> Average detonation rate (µs-1)
<dF/dt>D Average detonation rate at infinite radius (µs-1)

Fe Burn fraction at the back of the reaction zone (dimensionless)
G Rate constant at radius Ro (µs.GPab1)-1

GD Rate constant at infinite radius (µs.GPab1)-1

I Integral of all F-terms (dimensionless)
i Sub indicating ith zone (dimensionless)
P Pressure (GPa)



PD Maximum pressure at infinite radius (GPa)
Pm Maximum pressure at radius Ro (GPa)

 <Pm>     Average maximum pressure at radius Ro (GPa)
RD Generalized radius (dimensionless)

Ro Initial explosive radius (mm)
t Time (µs)
te Time at end of reaction zone (µs)

up Particle velocity (mm/µs)
upx X-direction particle velocity (mm/µs)

upy Y-direction particle velocity (mm/µs)
Us Detonation velocity at radius Ro (mm/µs)
V Relative volume (dimensionless)
vcj Relative volume at the C-J point (dimensionless)
<xe> Average reaction zone length (mm)
λ Fraction of radial area (dimensionless)

ρo Initial explosive density  (g/cm3)
σ Variable that links radius and reaction zone length

Figure captions

Figure 1.  Extreme concave-down curve for near-ideal PBX 9404.  This takes a large a = 0.67 and b = 2.3,
(thick line) or b may be reduced by using a pressure cutoff (thin line).

Figure 2.  Somewhat non-ideal AN emulsion k1a (squares) and ANFO prill (circles) with b = 1.5 and a =
0, c = 1. The shape is close to being a straight line.

Figure 3. Concave-up shapes for extremely non-ideal AN (squares), potassium chlorate/sugar (diamonds)
and HANFO (circles) with a = 0, c = 1 and b = 0.8.

Figure 4.  Code plot of dimensionless detonation velocity-squared and pressure as a function of the burn
fraction. The results are close to linear for both functions. The symbols indicate dimensionless detonation
velocity (circles)  and dimensionless pressure (squares).



Figure 1

0.8

0.85

0.9

0.95

1

D
et

on
at

io
n 

V
el

oc
it

y,
 U

s/D

0 0.005 0.01 0.015 0.02
Generalized Inverse Radius, RD/Ro

Thick Line
a = 0.67, c = 1.5, b = 2.3
Thin Line
a = 0.67, c = 1.2, b = 1,
pressure  cutoff



0.2

0.4

0.6

0.8

1

D
et

on
at

io
n 

V
el

oc
it

y,
 U

s/
D

0 0.1 0.2 0.3
Generalized Inverse Radius, RD/Ro

b =1.5

Figure 2.



0.2

0.4

0.6

0.8

1

G
en

er
al

iz
ed

 D
et

 V
el

oc
it

y,
 U

s/
D

0 0.5 1 1.5
Generalized Inverse Radius, RD/Ro

b = 0.8

Figure 3.



Figure 4.

0

0.2

0.4

0.6

0.8

1

 (
U

s/
D

)2
 a

nd
 (

P
m

/P
D

)

0 0.2 0.4 0.6 0.8 1
Burn Fraction, Fe


